Twist Target Enrichment Standard Hybridization v1 Protocol

For use with the Twist NGS Workflow

The Twist Target Enrichment protocol generates enriched DNA libraries for sequencing on Illumina next-generation sequencing (NGS) systems. This manual details the steps for a 16-hour hybridization in a two-day target enrichment workflow.

A component of the Twist Target Enrichment for NGS workflow, this protocol is:

- Designed for single or multiplex hybridization reactions using either Twist fixed or custom panels; optional secondary
 panels (spike-ins) can also be added for additional content
- Optimized for use with Twist Library Preparation Kits
- · Should only be performed with the reagents specified or their equivalents

Twist NGS workflow. The complete NGS workflow takes you from sample preparation to NGS sequencing and data analysis. A component of this workflow, the Twist Target Enrichment Protocol works in conjunction with the other component protocols.

This product is for research use only.

PROTOCOL COMPONENTS

Read the product packaging and storage recommendations carefully for each component, and store components as recommended below immediately upon arrival.

CATALOG # NAME DESCRIPTION						
TWIST HYBRIDIZATION AND WASH KIT WITH AMP MIX (For target enrichment with standard hybridization)						
101279: 2 rxn* 104178: 12 rxn 104179: 96 rxn	Twist Hybridization Reagents (Box 1)	 Hybridization Mix Hybridization Enhancer Amplification Primers 	-20°C			
	Twist Wash Buffers (Box 2)	• Binding Buffer • Wash Buffer 1 • Wash Buffer 2	2-8°C			
	Equinox Library Amp Mix (Box 3)	• Equinox Library Amp Mix (2x)	-20°C			
		IST PROBE PANELS Ordered separately)				
Choice of panel type and reaction size	Twist Fixed Panel	Fixed content enrichment panel for hybridization reactions (for example, Twist Human Core Exome Panel)	-20°C			
	Twist Custom Panel	Custom enrichment panel for hybridization reactions	-20°C			
		Custom or fixed enrichment panel for adding content to a fixed or custom panel	-20°C			
	TWIST BLOCKERS &	BEADS FOR TARGET ENRICHMENT	·			
100856: 2 rxn 100578: 12 rxn 100767: 96 rxn	Twist Universal Blockers	For the prevention of nonspecific capture: • Universal Blockers • Blocker Solution	-20°C			
101262: 2 rxn 100983: 12 rxn 100984: 96 rxn	Twist Binding and Purification Beads**	For target enrichment and purification: • Streptavidin Binding Beads • DNA Purification Beads	2-8°C			
104324: 2 rxn 104325: 12 rxn 104326: 96 rxn	Streptavidin Binding Beads DNA Purification Beads (contains additional volume for					

* Catalog # 101279 does not contain box 3 for Equinox Library Amp Mix. The Amp mix required for 2 rxn enrichment workflow is included with Twist Library Prep Kits for 16 samples.

** Only one of these two bead kit products is required for execution of the entire protocol. When using vacuum concentration, utilize Twist Binding and Purification Beads. When following Alternate Pre-Hybridization DNA Concentration Protocol, utilize Twist Dry Down Beads (see Appendix for more information).

LEGAL

This document may contain references to other third-party resources such as sources of information, hardware or software, products, or services and/or web sites owned or licensed by third parties. Twist Bioscience does not control or take responsibility for any third-party resources, including, without limitation, the accuracy, reliability, copyright compliance, compatibility, performance, legality, or any other aspect of third-party resources. The inclusion of such resources in this document does not imply endorsement by Twist Bioscience of any third-party resources.

Certain processes described in this document may be subject to patent rights or licenses in local jurisdictions, including those owned or licensed by parties other than Twist Bioscience. Purchase of this product does not include a license to perform any such processes. Users of this product may, therefore, be required to obtain a patent license depending upon the particular application and country in which the product is used before performing such processes.

Twist Bioscience, the various Twist logos, and the Twist NGS logo used herein are trademarks of Twist Bioscience Corporation. All other trademarks are the property of their respective owners.

©2022 Twist Bioscience Corporation. All rights reserved.

INTENDED USE

This product is for research use only. This product is not intended for the diagnosis, prevention, or treatment of a disease or condition. Twist Bioscience assumes no liability regarding the use of the product for applications in which it is not intended.

TABLE OF CONTENTS

Twist Target Enrichment Protocol	1
Materials Supplied by User	5
General Notes and Precautions	6
Protocol Overview	7
Step 1: Prepare Libraries for HybridizationAliquot and Dry Down the Library	8 8
 Step 2: Hybridize Capture Probes with Pools Prepare the Probe Solution Perform the Hybridization Reaction 	10 10 11
 Step 3: Bind Hybridized Targets to Streptavidin Beads Prepare the Beads Bind the Targets 	12 12 13
 Step 4: Post-Capture PCR Amplify, Purify, and Perform QC Prepare the Beads, Thermal Cycler, and PCR Mix PCR Amplify Purify Perform QC 	15 15 16 16 17
Step 5: Sequencing on an Illumina Platform	18
Appendix: Alternate Pre-Hybridization DNA Concentration Protocol	19

MATERIALS SUPPLIED BY USER

The following materials or their equivalent are required to generate enriched libraries using the Twist Target Enrichment workflow.

PRODUCT	SUGGESTED SUPPLIER			
REAGENTS AND CONSUMABLES				
Ethanol (200 proof)	_			
Molecular biology grade water	_			
10 mM Tris-HCl pH 8	_			
Buffer EB	Qiagen			
1.5-ml microcentrifuge tubes	VWR			
Thin-walled PCR 0.2-ml strip-tubes	Eppendorf			
96-well thermal cycling plates (optional)	VWR			
1.5-ml compatible magnetic stand	Beckman Coulter			
96-well compatible magnetic plate	Alpaqua			
Qubit dsDNA High Sensitivity Quantitation Assay	Thermo Fisher Scientific			
Agilent High Sensitivity DNA Kit	Agilent Technologies			
EQU	IPMENT			
Pipettes and tips	_			
Vortex mixer	_			
Benchtop mini centrifuge for 0.2-ml tubes	_			
Thermomixer for 1.5-ml tubes	Eppendorf			
Thermal cycler (96-well) with heated lid	_			
Lab shaker, rocker, rotator	_			
Fluorometer (Qubit 3.0)	Thermo Fisher Scientific			
2100 Bioanalyzer	Agilent Technologies			
Vacuum concentrator (if unavailable, see Appendix)	_			

GENERAL NOTES AND PRECAUTIONS

Wear appropriate protective equipment (lab coat, gloves, and protective glasses or goggles) at all times when performing this protocol.

For best results, read this document before performing the protocol, and follow the provided instructions. Twist cannot guarantee the performance of the Twist Target Enrichment Workflow if modifications are made to the protocol.

Test the compatibility of your thermal cycler and PCR tubes by incubating them at 95°C for up to 5 minutes to ensure the PCR tubes do not crack under heat and pressure. Adjust the tightness of the thermal cycler lid and/or use a spacer specific to the thermal cycler model.

If using a non-human capture panel, replace the Blocker Solution with a species-specific blocking solution (not provided).

This protocol details different methods for mixing reagents (gentle pipetting, flicking or tapping, vortexing), depending on the volume, vessel, and reagents involved.

For technical support, contact customersupport@twistbioscience.com

PROTOCOL OVERVIEW

This protocol is a component of the Twist NGS workflow. It begins with amplified, indexed genomic DNA (gDNA) libraries and generates target-enriched DNA libraries for sequencing on Illumina next-generation sequencing (NGS) systems.

	HYBRIDIZATION TARGET ENRICHMENT WORKFLOW (AMPLIFIED INDEXED LIBRARIES)	TIME	
EP	Prepare libraries for hybridization Indexed library pool STOPPING POINT	1 hour	
P	Hybridize capture probes with pools Hybridized targets in solution	16 hours	
P	Bind hybridized targets to streptavidin beads Captured targets on beads	1.5 hour	
P	Post-capture PCR amplify, purify, and perform QC Enriched libraries STOPPING POINT	1 hour	
P	Sequence on an Illumina platform Libraries ready for sequencing on Illumina platform	-	

1.1

STEP 1 PREPARE LIBRARIES FOR HYBRIDIZATION

This step involves aliquoting the appropriate amount of amplified, indexed libraries (generated previously in library preparation) and preparing the hybridization reaction solution. For a list of Twist Library Preparation Kit options, see <u>twistbioscience.com/products/ngs</u>.

- When multiplexing, follow the pooling guidelines included in the Appendix of the Twist Library Preparation Protocol used.
- If using another library preparation method, use the pooling guidelines specific to that method.
- If vacuum concentrator is unavailable, see Appendix.

Reagents Required

Amplified, indexed library

ALIQUOT AND DRY DOWN THE LIBRARY

This protocol supports a single or multiplex (up to 8-plex) hybridization capture. The amount of indexed library to use depends on the number of indexed samples per pool.

Use the concentration of each amplified, indexed library to calculate the volume (in μ l) of each library needed for hybridization:

- Determine the amount of each indexed library per pool from the table below.
- Divide the amount of each indexed library per pool by the concentrations measured in ng/µl from the library preparation QC.

For example: If multiplexing eight libraries per hybridization reaction, the amount of each library will be 187.5 ng and the total mass of the pool will be 1,500 ng.

NUMBER OF INDEXED SAMPLES PER POOL	AMOUNT OF EACH INDEXED LIBRARY PER POOL	TOTAL MASS PER POOL		
1	500 ng	500 ng		
2	500 ng	1,000 ng		
3	500 ng	1,500 ng		
4	375 ng	1,500 ng		
8	187.5 ng	1,500 ng		

NOTES:

- If the amount of library you have is insufficient, you can use a smaller amount; using less, however, may result in decreased library complexity.
- More than 1,500 ng (1.5 μg) total DNA can be used; do not, however, use more than 4 μg total DNA as this might lead to reduced performance of the enrichment.

1.2	Transfer the calculated volumes from each amplified indexed library to an indexed library pool reaction tube for each hybridization being performed. Clean thin-walled PCR 0.2-ml strip-tube or well of a 96-well thermal cycling plate are recommended to avoid unnceccesary transfers in downstream steps.
	NOTE: Check for a proper seal on the tube(s) as evaporation may occur leading to decreased performance.
1.3	Pulse-spin the indexed library pool tube(s) to minimize the amount of bubbles present.
1.4	Dry the indexed library pool(s) using a vacuum concentrator using low or no heat.
	NOTE: If alternate method to drydown is desired, proceed to Appendix: Alternate Pre-Hybridization DNA Concentration Protocol.
	STOPPING POINT: If not proceeding immediately to Step 2, store the dried indexed library pool at -20°C for up to 24 hours.

PROCEED TO STEP 2: HYBRIDIZE CAPTURE PROBES WITH POOLS

T

STEP 2 HYBRIDIZE CAPTURE PROBES WITH POOLS

Use the dried indexed library pool(s) from Step 1 for performing the hybridization reaction.

▲ IMPORTANT: Before proceeding with this step, test the compatibility of your thermal cycler and PCR tubes or plates by incubating them at 95°C for up to 5 minutes to ensure they do not crack under heat and pressure. Adjust the tightness of the thermal cycler lid and/or use a spacer specific to the thermal cycler model.

Reagents Required

- Indexed library pool(s) from Step 1
- Twist fixed or custom panel
- Twist custom secondary (spike-in) panel(s) (optional)
- From Twist Hybridization Reagents:
 - Hybridization Mix
 - Hybridization Enhancer
- From Twist Universal Blockers:
 - Universal Blockers
 - Blocker Solution (If using a non-human capture panel, replace with species-specific blocking solution, not provided)

Before You Begin

- Thaw all required reagents on ice, then pulse-vortex for 2 seconds to mix and then pulse-spin.
- Set a heat block to 65°C.
- Program a 96-well thermal cycler to 95°C and set the heated lid to 105°C.

PREPARE THE PROBE SOLUTION

2.1 Heat the Hybridization Mix at 65°C in the heat block for 10 minutes, or until all precipitate is dissolved, then cool to room temperature on the benchtop for 5 minutes.

2.2

Prepare a probe solution in a clean thin-walled PCR 0.2-ml strip-tube or well of a 96-well thermal cycling plate as indicated in the table below. Mix by flicking the tube(s).

REAGENT	VOLUME
Hybridization Mix	20 µl
Twist Fixed or Custom Panel	4 µl
Optional: Secondary Panel (in place of water)	4 µl
Water (up to total volume)	(0-4) µl
Total	28 µl

Τ

2.2 (continued)	NOTES:
	- If using optional Secondary Panel (spike-in) content, add 4 μ l of probes in place of water.
	Hybridization Mix is very viscous. Pipette slowly to ensure accurate pipetting.
	• Small white particles may be present in the Twist Fixed or Custom Panel tube(s). This will not affect
	the final capture product.
2.3	Resuspend the dried indexed library pool (from Step 1.4) by adding the reagents described below.
	Mix by flicking the tube(s).

REAGENT	VOLUME
Dried Indexed Library Pool	_
Blocker Solution*	5 µl
Universal Blockers	7 µl
Total	12 µl

* IMPORTANT: If using a non-human capture panel, replace with species-specific blocking solution, not provided.

PERFORM THE HYBRIDIZATION REACTION

- **2.4** Heat the probe solution to 95°C for 2 minutes in a thermal cycler with the lid at 105°C, then immediately cool on ice for 5 minutes.
- **2.5** While probe solution is cooling on ice, heat the tube containing the resuspended indexed library pool at 95°C for 5 minutes in a thermal cycler with the lid at 105°C, then equilibrate both the probe solution and resuspended indexed library pool to room temperature on the benchtop for 5 minutes.
- **2.6** Vortex and spin down the probe solution, then transfer the entire volume to the resuspended indexed library pool. Mix well by vortexing.
- **2.7** Pulse-spin the tube(s) to ensure all solution is at the bottom of the tube(s).
- **2.8** Add 30 μl Hybridization Enhancer to the top of the entire capture reaction.
- **2.9** Pulse-spin the tube(s) to ensure there are no bubbles present.
 - ▲ IMPORTANT: Seal the tube(s) tightly to prevent excess evaporation over the 16-hour incubation.
- 2.10
 Incubate the hybridization reaction at 70°C for 16 hours in a thermal cycler with the lid at 85°C.
 NOTE: Halting hybridization between 15–17 hours will not affect downstream capture quality.

PROCEED TO STEP 3: BIND HYBRIDIZED TARGETS TO STREPTAVIDIN BEADS

T

STEP 3

BIND HYBRIDIZED TARGETS TO STREPTAVIDIN BEADS

Reagents Required

- Hybridization reactions (from Step 2.10)
- From the Twist Hybridization Reagents:
 - Amplification Primers
- From the Twist Wash Buffers:
 - Binding Buffer
 - Wash Buffer 1
 - Wash Buffer 2
- From Twist Binding and Purification Beads or Twist Dry Down Beads:
 - Streptavidin Binding Beads
 - DNA Purification Beads

Before You Begin

- Preheat the following tubes at 48°C until any precipitate is dissolved:
 - Binding Buffer
 - Wash Buffer 1
 - Wash Buffer 2
- For each hybridization reaction:
 - + Equilibrate 800 μI Binding Buffer to room temperature
 - Equilibrate 200 μl Wash Buffer 1 to room temperature
 - Leave 700 μl Wash Buffer 2 at 48°C
- Equilibrate the Streptavidin Binding Beads to room temperature for at least 30 minutes
- In preparation for Step 4 (Post-Capture PCR Amplify, Purify, and Perform QC):
 - Thaw on ice:
 - Equinox Library Amp Mix (2x)
 - Amplification Primers
 - Equilibrate DNA Purification Beads (from the Twist Binding and Purification Beads or Twist Dry Down Beads) to room temperature for at least 30 minutes

PREPARE THE BEADS

3.1	Vortex the pre-equilibrated Streptavidin Binding Beads until mixed.
3.2	Add 100 μ l Streptavidin Binding Beads to a 1.5-ml microcentrifuge tube. Prepare one tube for each hybridization reaction.
3.3	Add 200 μl Binding Buffer to the tube(s) and mix by pipetting.
3.4	Place the tube(s) on a magnetic stand for 1 minute, then remove and discard the clear supernatant. Make sure to not disturb the bead pellet. Remove the tube from the magnetic stand.

T.

- **3.5** Repeat the wash (Steps 3.3 and 3.4) two more times for a total of three washes.
- **3.6** After removing the clear supernatant from the third wash, add a final 200 μl Binding Buffer and resuspend the beads by vortexing until homogenized.

BIND THE TARGETS

3.7 After the hybridization (Step 2.10) is complete, open the thermal cycler lid and directly transfer the volume of each hybridization reaction into a corresponding tube of washed Streptavidin Binding Beads from Step 3.6. Mix by pipetting and flicking.

▲ IMPORTANT: Rapid transfer directly from the thermal cycler at 70°C is a critical step for minimizing off-target binding. Do not remove the tube(s) of hybridization reaction from the thermal cycler or otherwise allow it to cool to less than 70°C before transferring the solution to the washed Streptavidin Binding Beads. Allowing to cool to room temperature for less than 5 minutes will result in as much as 10–20% increase in off-target binding.

3.8 Mix the tube(s) of the hybridization reaction with the Streptavidin Binding Beads for 30 minutes at room temperature on a shaker, rocker, or rotator at a speed sufficient to keep the solution mixed.

NOTE: **Do not vortex.** Aggressive mixing is not required.

- **3.9** Remove the tube(s) containing the hybridization reaction with Streptavidin Binding Beads from the mixer and pulse-spin to ensure all solution is at the bottom of the tube(s).
- **3.10** Place the tube(s) on a magnetic stand for 1 minute.
- **3.11** Remove and discard the clear supernatant including the Hybridization Enhancer. Do not disturb the bead pellet.

NOTE: Some Hybridization Enhancer may be visible after supernatant removal and throughout each wash step. It will not affect the final capture product.

- **3.12** Remove the tube(s) from the magnetic stand and add 200 μl Wash Buffer 1. Mix by pipetting.
- **3.13** Pulse-spin to ensure all solution is at the bottom of the tube(s).
- **3.14** Transfer the entire volume from Step 3.13 (~200 μl) into a new 1.5-ml microcentrifuge tube, one per hybridization reaction. Place the tube(s) on a magnetic stand for 1 minute.

A IMPORTANT: This step reduces background from non-specific binding to the surface of the tube.

3.15 Remove and discard the clear supernatant. Make sure to not disturb the bead pellet.

3.16	Remove the tube(s) from the magnetic stand and add 200 μ l of 48°C Wash Buffer 2. Mix by pipetting, then pulse-spin to ensure all solution is at the bottom of the tube(s).
3.17	Incubate the tube(s) for 5 minutes at 48°C.
3.18	Place the tube(s) on a magnetic stand for 1 minute.
3.19	Remove and discard the clear supernatant. Make sure to not disturb the bead pellet.
3.20	Repeat the wash (Steps 3.16–3.19) two more times, for a total of three washes.
3.21	After the final wash, use a 10 μl pipette to remove all traces of supernatant. Proceed immediately to the next step. Do not allow the beads to dry.
	NOTE: Before removing supernant, the bead pellet may be briefly spun to collect supernatant at the bottom of the tube or plate and returned to the magnetic plate.
3.22	Remove the tube(s) from the magnetic stand and add 45 μ l water. Mix by pipetting until homogenized, then incubate this solution, hereafter referred to as the Streptavidin Binding Bead slurry, on ice.

PROCEED TO STEP 4: POST-CAPTURE PCR AMPLIFY, PURIFY, AND PERFORM QC

T

STEP 4

POST-CAPTURE PCR AMPLIFY, PURIFY, AND PERFORM QC

Reagents Required

- Streptavidin Binding Bead slurry (from Step 3.22)
- Ethanol
- · Molecular biology grade water
- Reagents thawed and equilibrated in Step 3:
 - DNA Purification Beads
 - Equinox Library Amp Mix (2x)
 - Amplification Primers
- Agilent Bioanalyzer High Sensitivity DNA Kit (or equivalent)
- Thermo Fisher Scientific Qubit dsDNA High Sensitivity Quantitation Assay.

Before You Begin

- Prepare 500 μl 80% ethanol for each Streptavidin Binding Bead slurry to be processed.

PREPARE THE BEADS, THERMAL CYCLER, AND PCR MIX

4.1 Program a thermal cycler with the following conditions. Set the heated lid to 105°C.

	STEP	TEMPERATURE	TIME	# OF CYCLES		PANEL SIZE	# OF CYCLES SINGLEPLEX	# OF CYCLES MULTIPLEX	
1	Initialization	98°C	45 seconds	1		>100 Mb	6	5	
	IIIIIalization	70 C	45 Seconds		50-100 Mb	8	7		
2	Denaturation	98°C	15 seconds			10-50 Mb	9	8	
2	Denaturation	70 C	15 Seconds	Varies		1-10 Mb	10	9	
	Appealing	40%0	60°C 30 seconds		0 seconds		500-1,000 kb	12	11
	Annealing	80 C		30 200102			100-500 kb	14	13
	Extension	72°C	20 accordo			50-100 kb	15	14	
	Extension	12.0	30 seconds			<50 kb	16	15	
3	Final Extension	72°C	1 minute	1					
4	Final Hold	4°C	HOLD	_					

NOTE: Number of amplification cycles may vary depending on hybridization reaction size.

4.2 If the Streptavidin Binding Bead slurry has settled, mix by pipetting.

4.3 Transfer 22.5 μl of the Streptavidin Binding Bead slurry to a 0.2-ml thin-walled PCR strip-tube(s). Keep on ice until ready to use in the next step.

NOTE: Store the remaining 22.5 μ l water/Streptavidin Binding Bead slurry at –20°C for future use.

4.4 Prepare a PCR mixture by adding the following reagents to the tube(s) containing the Streptavidin Binding Bead slurry. Mix by pipetting.

REAGENT	VOLUME PER REACTION
Streptavidin Binding Bead Slurry	22.5 µl
Amplification Primers, ILMN	2.5 µl
Equinox Library Amp Mix (2x)	25 µl
Total	50 µl

PCR AMPLIFY

- **4.5** Pulse-spin the tubes, transfer them to the thermal cycler and start the cycling program.
- **4.6** When the thermal cycler program is complete, remove the tube(s) from the block and immediately proceed to the Purify step.

PURIFY

- **4.7** Vortex the pre-equilibrated DNA Purification Beads until well mixed.
- **4.8** Add 50 μl (1.0x) homogenized DNA Purification Beads to the tube(s) from Step 4.6. Mix well by vortexing.

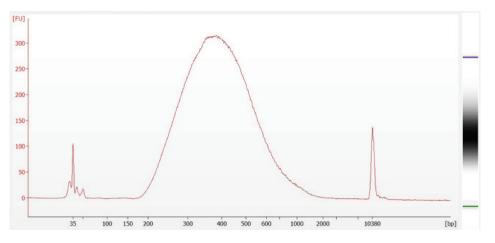
NOTE: It is not necessary to recover supernatant or remove Streptavidin Binding Beads from the amplified PCR product.

- **4.9** Incubate for 5 minutes at room temperature.
- **4.10** Place the tube(s) on a magnetic plate for 1 minute or until the supernant is clear.
- **4.11** The DNA Purification Beads form a pellet, leaving a clear supernatant. Without removing the plate or tube(s) from the magnetic plate, remove and discard the clear supernatant.
- **4.12** Wash the bead pellet by gently adding 200 μl freshly prepared 80% ethanol (do not disturb the pellet). Incubate for 1 minute, then remove and discard the ethanol.
- **4.13** Repeat this wash once, for a total of two washes, while keeping the tube on the magnetic plate.
- **4.14** Carefully remove all remaining ethanol using a 10 µl pipette, making sure to not disturb the bead pellet.

NOTE: Before pipetting, the bead pellet may be briefly spun to collect ethanol at the bottom of the plate or tube and returned to the magnetic plate.

4.15 Air-dry the bead pellet on the magnetic plate for 5 minutes or until the bead pellet is dry. Do not overdry the bead pellet.

4.16	Remove the tube(s) from the magnetic plate and add 32 μl water, 10 mM Tris-HCl pH 8, or Buffer EB to each capture reaction. Mix by pipetting until homogenized.
4.17	Incubate at room temperature for 2 minutes.
4.18	Place the plate or tube(s) on a magnetic plate and let stand for 3 minutes or until the beads fully pellet.


4.19 Transfer 30 μl of the clear supernatant containing the enriched library to a clean thin-walled PCR 0.2-ml strip-tube or well of a 96-well thermal cycling plate, making sure to not disturb the bead pellet.

PERFORM QC

4.20

Validate and quantify each enriched library using an Agilent Bioanalyzer High Sensitivity DNA Kit and a Thermo Fisher Scientific Qubit dsDNA High Sensitivity Quantitation Assay.

NOTE: When using the Agilent Bioanalyzer High Sensitivity DNA Kit, load 0.5 μ l of the final sample. Average fragment length should be 375–425 bp using a range setting of 150–1,000 bp. Final concentration may vary and is dependent on panel size, library input, hybridization reaction size, and the number of PCR cycles.

Electropherogram generated by an Agilent High Sensitivity DNA analysis of the enriched gDNA library samples that were prepared as described. Note the single prominent peak.

STOPPING POINT: If not proceeding immediately, store the enriched library sample at -20°C for up to 24 hours.

T.

STEP 5 SEQUENCING ON AN ILLUMINA PLATFORM

Sequence the enriched libraries on an Illumina platform. Sequencing protocols and settings depend on the application and instrumentation used. Please contact <u>customersupport@twistbioscience.com</u> for recommendations.

END OF WORKFLOW

APPENDIX: ALTERNATE PRE-HYBRIDIZATION DNA CONCENTRATION PROTOCOL

Reagents Required

- Amplified, indexed library pool(s) from Step 1.2
- Ethanol
- Molecular biology grade water
- From Twist Dry Down Beads:
- DNA Purification Beads
- From Twist Universal Blockers:
 - Universal Blockers
 - Blocker Solution

Before you begin:

- Equilibrate DNA Purification Beads to room temperature for at least 30 minutes
- · Vortex the pre-equilibrated DNA Purification Beads until well mixed
- Prepare 500 μl fresh 80% ethanol for each sample to be processed.

CONCENTRATE THE DNA LIBRARIES

1	Add 1.8x homogenized DNA Purification Beads to the tube(s) containing the DNA library(ies) from Step 1.2. Mix well by vortexing.
	NOTE: For amplified, indexed library pool(s) with a volume of less than 10 μ l, bring volume up to 10 μ l with water.
2	Incubate for 5 minutes at room temperature.
3	Pulse spin to ensure all the solution is at the bottom of the tube(s) and place the tube(s) on a magnetic plate or rack for 3 minute or until the solution is clear.
4	The DNA Purification Beads form a pellet, leaving a clear supernatant. Without removing the plate or tube(s) from the magnetic plate or rack, remove and discard the clear supernatant.
5	Wash the bead pellet by gently adding 200 μl freshly prepared 80% ethanol (do not disturb the pellet). Incubate for 1 minute, then remove and discard the ethanol.
6	Repeat this wash once, for a total of two washes, while keeping the tube on the magnetic plate.
7	Carefully remove all remaining ethanol using a 10 μ l pipette, making sure to not disturb the bead pellet.
	NOTE: Pulse spin if necessary to ensure complete removal of ethanol.

Air-dry the bead pellet on a magnetic plate for 1–5 minutes or until the bead pellet is dry. Do not overdry the bead pellet.
 Remove the tube(s) from the magnetic plate or rack and add 7 μl Universal Blockers and 5 μl Blocker Solution. Mix by pipetting until homogenized
 Proceed to Step 2.1 and continue the protocol omitting Step 2.3.

END OF APPENDIX

LAST REVISED: February 2, 2022

REVISION	DATE	DESCRIPTION
4.0	Feb 2, 2022	Minor title change for clarity
3.0	Nov 12, 2021	Addition of appendix providing optional bead based alternative to the SpeedVac system for pre-hybridization library concentration
2.0	May 14, 2021	 Library Amplification Mix is now included with the 12 reactions and 96 reactions enrichment kits. Kit catalog numbers, kit component list, and workflow steps are updated to include Library Amplification Mix. Minor workflow steps are updated for more clarity